Towards per datum error characterization for radio occultation retrieval products

Chi O. Ao, Byron A. Iijima, Anthony J. Mannucci, Panagioits Vergados, Olga P. Verkhoglyadova, and Kuo-Nung Wang

Jet Propulsion Laboratory
California Institute of Technology, Pasadena, CA

IROWG6/COSMIC-10, Sept. 21-27, 2017, Estes Park, CO

Outline

- RO processing updates at JPL
- Approach in uncertainty estimates
- Results from CHAMP and COSMIC
- Summary

RO processing at JPL

 Goal: a consistently processed RO data record from NASA/JPL receivers that includes CHAMP, SAC-C, GRACE, COSMIC, TSX, TDX, and KOMPSAT-5 from Level 0 to Level 3.

Recent changes:

- Cubic (previously quadratic) smoothing of phase to reduce biases above 20 km altitude where smoothing intervals are larger (v2.7).
- New Abel high-altitude initialization that aims to <u>reduce</u> <u>bias from noisy measurements</u> (which may impact consistency from different missions) and <u>reduce</u> <u>retrieval failures</u> (v2.8 in progress).

CHAMP/COSMIC collocations < 300 km, 2 hr

Motivation: Establishing GNSS RO as reference observations

- Following the GRUAN (GCOS Reference Upper Air Network) paradigm:
- ✓ Is traceable to an SI unit or an accepted standard
- ✓ Provides a comprehensive uncertainty analysis
- ✓ Is documented in accessible literature
- ✓ Is validated (e.g. by intercomparison or redundant observations)
- ✓ Includes complete meta data description
- ✓ Important to distinguish contributions from systematic error and random error

Some existing works

Kursinski et al. 1997

 Comprehensive theoretical analysis with multiple error sources.

Kuo et al. 2005

 Derived error estimates based on actual retrieval comparison with NWP forecasts.

Scherlin-Pirscher et al. 2011

 Explicit separation of systematic and random errors, plus sampling error for climatological averages.

Schwarz et al. 2017

- Detailed error estimate and propagation.
- Similar objectives as ours.

Independent uncertainty estimates specific to a retrieval system are desirable.

Uncertainty estimation (separate random & systematic)

Random errors: Bending angle

Estimate phase noise from the L1 and L2 excess phase data:

- Detrend phase and compute standard deviation over 1 sec to get the 1-sec phase noise.
- 2. Scale to actual smoothing interval *T*-sec if needed.
- 3. Derive bending angle uncertainty using the following expressions [Hajj et al. 2002]:

$$\sigma_i(M) \approx \frac{c}{f_i V} \left(\frac{\nu \sigma_\phi}{\Delta t \ M^{3/2}} \right)$$

 Δt = sample time (e.g., 20 msec) M = number of data points in the smoothing interval (e.g., 50) V = tangent point velocity (e.g. 2 km/s)

$$\sigma_n^2 = \sigma_1^2(M_1) + (1.54)^2 \left[\sigma_1^2(M_2) + \sigma_2^2(M_2) \right]$$
 Coarse smoothing (M₂ > M₁)

Random errors: Refractivity

$$\sigma_j^{(N)} = \left[\sum_{i=j+1}^M F_{ji}^2 \sigma_i^2\right]^{1/2}$$

where
$$F_{ji}=rac{10^6}{\pi}rac{\delta a_i}{\sqrt{a_i^2-a_j^2}}$$

Solid lines: BA contribution from impact height < 60 km

Dashed lines: impact height < 80 km

Sources of systematic BA errors

Not an exhaustive list!

1. Residual ionosphere

- 2. Horizontal inhomogeneity
- 3. Local multipath
- 4. POD (pos, vel, clock)

For lower troposphere:

- 5. Tracking error? [Zus et al. 2014]
- 6. Retrieval nonlinearity? [Sokolovsiy et al. 2010]

Systematic errors: Refractivity

From <u>systematic error of BA</u>:

$$\langle \Delta N_j \rangle = \sum_{i=j+1}^{M} F_{ji} \langle \Delta \alpha_i \rangle$$

• Abel Upper Boundary (UB) condition introduces uncertainty in refractivity. For exponential extrapolation above a_u , we estimate the refractivity uncertainty at a_j below a_u due to scaleheight H uncertainty as

$$\langle \Delta N_j \rangle^{(U)} = U_j(H \pm \Delta H) - U_j(H)$$

where *U* is given by [Gleisner and Healy, 2013]

$$U(a; H) \approx 10^6 \alpha_u e^{-(a-a_u)/H} \sqrt{\frac{H}{2\pi a}} \operatorname{erfc}\left(\sqrt{\frac{a_u - a}{H}}\right)$$

ΔH will be determined based on residuals to each fit

Iono & UB errors

Examples from CHAMP & COSMIC

Estimated random BA uncertainty

Examples from CHAMP & COSMIC

Better estimate of iono error

$$\begin{split} \alpha_{\rm c}(a) &= \alpha_{\rm L1}(a) + \frac{f_2^2}{f_1^2 - f_2^2} (\alpha_{\rm L1}(a) - \alpha_{\rm L2}(a)) \\ &+ \kappa(a) (\alpha_{\rm L1}(a) - \alpha_{\rm L2}(a))^2, \end{split}$$
 Healy and Culverwell, 2015

Summary

- Progress towards per datum uncertainty characterization of RO retrieval products at JPL.
- A few dominant error sources have been considered so far.
- Uncertainty estimates need to be verified (through comparisons with other data, RO pairs, etc.) and refined.
- Per datum uncertainty gives an effective approach in quality control.